SCS ENGINEERS

Results of the Second Quarter 2005 Groundwater Monitoring and Sampling Event

Schmidbauer Lumber, Inc. 1099 Waterfront Drive Eureka, California

File Number 01203316.00

Prepared by:

SCS Engineers 3645 Westwind Boulevard Santa Rosa, California 95403

To:

Kasey Ashley North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, California

14 July 2005

LIMITATIONS/DISCLAIMER

This report has been prepared for Schmidbauer Lumber Company, Inc. with specific application to a quarterly monitoring event for the property located at 1099 Waterfront Drive, Eureka, California (the "Site"). Field activities and sampling were conducted in accordance with the care and skill generally exercised by reputable professionals, under similar circumstances, in this or similar localities. No other warranty, either expressed or implied, is made as to the professional advice presented herein.

Access to the Property was limited by buildings, automotive traffic, underground and aboveground utilities, and other miscellaneous site features. Therefore, the field exploration and points of subsurface observation were somewhat restricted.

Changes in site use and conditions may occur due to variations in rainfall, temperature, water usage, or other factors. Additional information which was not available to the consultant at the time of this quarterly monitoring event or changes which may occur on the site or in the surrounding area may result in modification to the site that would impact the summary presented herein. This report is not a legal opinion.

We look forward to continuing to work with you on this project and trust this report provides the information you require at this time. If you have any questions or need additional information, please call SCS at 707.476.1590.

Scott Graham

Project Geologist

Date

Karin W. Freshel

Certified Engineering Geologist #2264

Date

Expires 31

Introduction

SCS Engineers (SCS) is pleased to present the results for the second quarter 2005 groundwater monitoring and sampling event at the Schmidbauer Lumber, Inc. (Schmidbauer) site located at 1099 Waterfront Drive in the City of Eureka, California. A summary of historical site investigation activities is presented in previous reports (PNEG, 1998a, 1999a, & 2001c; SCS, 2003b & 2004b). The site location is as shown on the attached Site Location Map (Figure 1). General site features are as shown on the attached Site Plan (Figure 2).

Groundwater Monitoring

Depth to groundwater measurements were collected from monitoring wells MW-1, MW-2, MW-3R, MW-4, MW-5, MW-7, MW-8D and MW-9D on 16 June 2005 in order to determine groundwater flow direction and gradient at the site. Depth to groundwater in the shallow wells ranged from approximately 2.11 to 3.11 feet below existing grade. The depths to groundwater in the deep wells (MW-2, MW-8D, and MW-9D) were 6.61 to 7.25 feet below existing grade. The depth to groundwater measurements and well casing elevations were used to calculate the groundwater flow direction and gradient at the Site. Casing and groundwater elevations are reported in feet relative to mean sea level. Depths to groundwater are expressed in feet. The site-wide or regional shallow groundwater flow direction was interpolated to be north-northwest (Figure 3, and Chart 2) at a calculated gradient of 0.001, localized shallow groundwater flow direction and gradient were not determined as well MW-6 was inaccessible (Figure 4, and Chart 3), and the deep flow direction was interpolated to be North (Figure 5 and Chart 1) at a calculated gradient of 0.001 for the second quarter 2005 monitoring event. Groundwater flow direction and gradient for this and previous monitoring events are presented in Tables 1A, 1B, and 1C (attached).

Groundwater Sampling

Monitoring wells were checked for the presence of free product using an oil/water interface probe. Free product was not present during this monitoring event. Wells scheduled for sampling were purged of approximately three (3) wetted well casing volumes, or at least five (5) gallons of groundwater, whichever was greater, or until the well went dry, using a submersible pump. Temperature, pH, conductivity, turbidity, and dissolved oxygen readings were measured during purging to determine that groundwater representative of aquifer conditions was entering the well casings for sampling. Wells were allowed to recover to 80 percent of static levels or for two hours prior to sampling. Groundwater samples were collected using a clean, disposable bailer for each well. Samples were transferred to appropriate laboratory-supplied containers for analysis. Groundwater samples were labeled, stored under refrigerated conditions, and transported under Chain-of-Custody documentation to Analytical Sciences (AS), a California Department of Health Services-certified laboratory, in Petaluma, California. All samples were collected in accordance with the SCS' Standard Soil and Water Sampling Procedures and QA/QC Protocol. Water generated

during recent site investigative activities is currently stored at the site in 55-gallon UN/DOT-approved 17-E/H drums, pending characterization and disposal. Information related to well purging was recorded on groundwater field sampling forms. Well Purge Records are presented in Appendix A.

Laboratory Analysis

Groundwater samples collected from MW-1, MW-2, MW-6, MW-7, MW-8D, and MW-9D were analyzed for chlorophenols using the Canadian Pulp Method. The Canadian Pulp Method was developed specifically to test for chlorophenols in samples with high wood sugars. This method is accepted by the North Coast Regional Water Quality Control Board (NCRWQCB) and by the Department of Toxic Substances Control DTSC.

Additionally, analysis for trihalomethanes By USEPA Test Method 8260B was also performed at the request of the NCRWQCB during this monitoring event.

Laboratory Analytical Results

All groundwater samples analyzed for this monitoring event were below laboratory minimum detection limits (MDLs) for target analytes. Recent analytical results are incorporated with historical data in Tables 2 through 11 and plotted on the attached time versus concentration diagram (See Diagram A). A copy of the laboratory report is also attached (Appendix B).

Discussion

Consistent with previous reports and based on historical analytical information, concentrations of target analytes [pentachlorophenol (PCP), tetrachlorophenol isomers, and trichlorophenol (TCP)] in all wells have followed a trend of continuous decline to below laboratory minimum detection limits since inception of the groundwater sampling program in March 1999 (Tables 2 - 11 and Diagram A).

All samples analyzed for this monitoring event were below laboratory MDLs for target analytes. Samples collected from the shallow groundwater monitoring wells (MW-1, and MW-3R through MW-7) have been below laboratory MDLs for all target analytes since the May 2002 quarterly sampling event. Samples collected from the deep groundwater monitoring wells (MW-2, MW-8D, MW-9D) have been below laboratory MDLs for all target analytes since the February 2004 quarterly sampling event. Monitor well MW-6 was inaccessible and was not sampled during this event.

A groundwater mound exists between Mill #1 and Mill #2 (Figure 2). A localized groundwater flow plate has been prepared for this area (Figure 4). Well MW-6 was inaccessible this quarter. Groundwater gradient and flow direction could not be calculated for this quarterly event.

Analysis for trihalomethanes was also performed this quarter as requested in the 8 June 2005 NCRWQCB letter. This analysis was performed to determine whether a leaking water line at the

Kasey Ashley 14 July 2005 Page 3

Site may be influencing groundwater gradient at the site. Groundwater samples were below laboratory MDLs for trihalomethanes (Table 12).

Project Update

SCS has submitted a report of findings for groundwater flow direction analysis and review for individual well grouping. The report identifies an approximate area for additional investigation. SCS will prepare and submit a workplan to NCRWQCB by 30 July 2005 in accordance with Cleanup and Abatement Order R1-2005-0040. The next quarterly monitoring event is scheduled for September 2005.

Kasey Ashley 14 July 2005 Page 4

Attachments

Figures

Figure 1: Site Location Map

Figure 2: Site Plan with Boring and Monitoring Well Locations

Figure 3: Site Plan - Groundwater Flow Direction and Gradient – Sitewide Shallow Wells:

MW 3R, 4 & 5 for 6/16/05

Figure 4: Site Plan - Groundwater Flow Direction and Gradient – Local Shallow Wells:

Wells MW1, MW6 & MW7 for 6/16/05

Figure 5: Site Plan - Groundwater Flow Direction and Gradient – Local Deep Wells: Wells

MW-2, MW-8D & MW 9D for 3/9/05

Charts

Chart 1: Windrose Diagram: Groundwater Flow Directions 3/99 through 6/05 - Deep

Monitoring Wells

Chart 2: Windrose Diagram: Shallow Monitoring Wells – 3/99 through 6/05

Chart 3: Windrose Diagram: Shallow Monitor Wells – 5/01 through 6/05

Tables and Diagrams

Key and Footnotes to Diagram and Tables

Diagram A: Contaminant Concentration & Groundwater Elevation vs. Time – MW-1

Table 1A: Groundwater Flow Direction and Gradient for Shallow Wells: Site Wide

Table 1B: Groundwater Flow Direction and Gradient for Shallow Wells: Local Table 1C: Groundwater Flow Direction and Gradient for Deep Wells

Table 1C: Groundwater Flow Direction and Gradient for Deep Wells Tables 2-11: Groundwater Analytical Results - MW-1 through MW-9D

Table 12: Groundwater Analytical Results - Trihalomethanes

Appendix A: Well Purge Records dated June 16, 2005

Appendix B: Analytical Sciences report #5061703, dated June 29, 2005

References

Environmental Resources Management, 1998, MW-14 Sampling Results, Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, September 4. Reactions and Movement of Organic Chemicals in Soils, Soil Science Society of America, 1989 PNEG, 1997, Work Plan for Subsurface Investigation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, January 27. , 1998a, Report on Subsurface Investigation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, May 22. , 1998b, Work Plan for Monitoring Well Installation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, December 10. , 1999a, Report of Investigation - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, August 30. , 1999b, Results of the June 1999 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, September 14. , 1999c, Results of the September 1999 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, November 15. , 2000a, Results of the December 1999 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, March 8. , 2000b, Results of the March 2000 Quarterly Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, May 23. , 2000c, Results of the 2nd Quarter 2000 Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, July 26. , 2000d, Work Plan for Installation of Peripheral Monitoring Wells and for Feasibility Study for Site Remediation by Phytoremediation - Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, September 12. , 2000e, Results of the 3rd Quarter 2000 Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, October 31. , 2001a, Results of the 4th Quarter 2000 Groundwater Monitoring Event at the Foot of Clark St., Eureka, California, January 22. , 2001b, Work Plan for Phytoremediation Pilot Study - Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, March 8. , 2001c, Report on Installation of Monitoring Wells - Schmidbauer Lumber Inc., Foot of Clark St., Eureka, California, March 29. , 2001d, Report on Results of the 2nd Quarter 2001 Quarterly Groundwater Monitoring and Sampling Event - Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, July , 2001e, Results of the 3rd Quarter 2001 Groundwater Monitoring and Sampling Event -Schmidbauer Lumber, Inc., Foot of Clark Street, Eureka, California, October 29. , 2002a, Results of the 4th Quarter 2001 Groundwater Monitoring and Sampling Event -Schmidbauer Lumber, Inc., 1099 Waterfront Drive, Eureka, California, January 17.

Kasey Ashley 14 July 2005 Page 7

Distribution List File No. 01203316.00

Mr. Rich Graham Schmidbauer Lumber, Inc. P.O. Box 152 Eureka, CA 95502

Mr. Mark Verhay Humboldt County Division of Environmental Health 100 H Street, Suite 100 Eureka, CA 95501

Figures

SCS ENGINE	ERS	SITE LOCATION MAP	74 1 110/4 00/	IN MILES	
3645 WESTWIND BOULEVARD SANTA ROSA, CA 95403 PH. (707) 546–9461 FAX (707) 544–5769		SHMIDBAUER LUMBER COMPANY	0 FIGURE:	1	2
PROJ. NO: 01203316.00 TAKEN BY:	FILE: 3316SiteLocMap	1099 WATERFRONT DRIVE EUREKA, CALIFORNIA		1	
10/20/04 CREATED BY JJM APP. BY: DRD				'	

Charts

WINDROSE DIAGRAM DEEP WELLS

(MW-2, MW-8D & MW-9D)

S C S E N G I N E E R S ENVIRONMENTAL CONSULTANTS	DEEP MONITORING WELLS	SCALE: (CHART-No Scale)
3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIA 94503 PH. (707) 946–5461 FAX. (707) 544–5769	PROJECT TITLE: SCHMIDBAUER LUMBER COMPANY	CHART:
PROJ. NO. 01203316.00 DWN_BY: ACAD FILE: 203316.00_2ndQ_05_Windrose CHK. BY: KWF APP. BY:	1099 WATERFRONT DRIVE EUREKA, CALIFORNIA	1

WINDROSE DIAGRAM

SHALLOW WELLS: MW-3⁽¹⁾, MW-3R⁽¹⁾, MW-4 AND MW-5

NOTES:

(1) Well MW-3 abandoned and replaced with well MW-3R.
Groundwater flows resolved with MW-3R are illustrated in red.

6/00, 9/00, 8/02 events not plotted, well MW-3 inaccessable.

S C S E N G I N E E R S ENVIRONMENTAL CONSULTANTS	SHEET TITLE: WINDROSE DIAGRAM: SHALLOW MONITORING WELLS — 3/99 THROUGH 6/05	SCALE: (CHART-No Scale)
3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIA 94503 PH. (707) 946–5461 FAX. (707) 544–5769	PROJECT TITLE: SCHMIDBAUER LUMBER COMPANY	CHART:
PROJ. NO. 01203316.00 DWN, BY: JUM 1203316.00_2ndQ_05_Windrose DATE 7/14/05 CHK, BY: APP. BY: KWF APP. BY:	1099 WATERFRONT DRIVE CUREKA, CALIFORNIA	2

WINDROSE DIAGRAM

SHALLOW WELLS: MW-1 , MW-6 AND MW-7 $\,$

NOTES:

6/05 event not plotted, well MW-6 inaccessable.

SCSENGINEERS ENVIRONMENTAL CONSULTANTS	SHEET TITLE: WINDROSE DIAGRAM: SHALLOW MONITORING WELLS — 5/01 THROUGH 6/05	SCALE: (CHART-No Scale)
3645 WESTWIND BOULEVARD SANTA ROSA, CALIFORNIN 94503 PH. (707) 946–5461 FAX. (707) 544–5769	PROJECT TITLE: SCHMIDBAUER LUMBER COMPANY	CHART:
PROJ. NO. 01203316.00 DWN, BY: JOB 1203316.00 2010 1203316.00 2010 2010 2010 2010 2010 2010 2010 2	1099 WATERFRONT DRIVE EUREKA, CALIFORNIA	3

Tables and Diagrams

Key and Footnotes to Diagram and Tables 1099 Waterfront Drive, Eureka, California

Key

PCP = Pentachlorophenol

mg/kg = Milligrams per kilogram

ug/L = Micrograms per liter

ND = Not detected

NA = Not analyzed

NR = Not reported

TCP = Trichlorophenol

TOC = Total organic carbon

mg/L = Milligrams per liter

Table Footnotes

- 1 Analytical method yields total trichlorophenols as conducted by Analytical Sciences
- 2 Co-elution
- 3 Well converted to semi-annual sampling program per 3/25/01 NCWQCB letter
- 4 Well converted to annual sampling program per 3/15/01 NCWQCB letter
- 5 Laboratory reports presence of pentachlorophenol below normal laboratory reporting limits
- 6 Wells inaccessible 5/27/04. Depth to water measured 6/2/04
- 7 Well inaccessible

Table 1A: Groundwater Flow Direction and Gradient Shallow Wells: Site Wide 1099 Waterfront Drive, Eureka, California

Date	Groundwater Flow Direction (+/- 5°)	Groundwater Gradient (i=ft / ft)	Notes
03/27/99	S50°E	0.002	
06/21/99	S50°W	0.002	
09/27/99	Generally Southwest		
12/22/99	Generally Southeast		
03/16/00	S45°E	0.002	
06/09/00	Northerly	0.002	MW-3 inaccessible (covered with multiple layers of logs)
09/12/00	N15°W	0.002	MW-2 and MW-3 inaccessible (covered with multiple layers of logs / lumber)
12/13/00	S20°W	0.001	
02/06/01	Southerly	0.002	
05/16/01	Southerly to Easterly	0.002	
08/21/01	Southerly	0.004	
11/13/01	Southerly	0.003	
02/12/02	Southerly	0.001	
05/14/02	Southerly	0.003	
08/22/02	Southerly	0.002	
11/20/02	Southerly	0.002	
02/26/03	Southerly	0.002	
05/09/03	Southerly	0.002	
08/19/03	Southerly	0.003	MW-8D installed
10/28/03	Southerly	0.004	Monitoring wells were re-surveyed to msl on October 7, 2003 MW-3 abandoned and replaced with MW-3R
11/20/03	Southerly	0.002	
02/05/04	S to E	0.001	
05/24/04	Northwesterly	0.003	MW-6 and MW-7 sampled on 6/2/04 (covered by logs on 5/24/04)
09/27/04	Northwesterly	0.002	
12/02/04	West-Northwesterly	0.001	
03/09/05	North-Northwest (N40°W)	0.001	Flow and gradient calculated using MW-3R, MW-4 and MW-5 only.
6/16/2005	North-Northwest (N45°W)	0.001	Flow and gradient calculated using MW-3R, MW-4 and MW-5 only.

Table 1B: Groundwater Flow Direction and Gradient Shallow Wells: Local (MW-1, MW-6 and MW-7 only)
1099 Waterfront Drive, Eureka, California

Date	Groundwater Flow Direction (+/- 5°)	Groundwater Gradient (i=ft / ft)	Notes
05/16/01	N75°W	0.001	
08/21/01	N30°E	0.001	
11/13/01	N80°W	0.004	
02/12/02	S85°W	0.001	
05/14/02	West (N90°W)	0.001	
08/22/02	S85°W	0.001	
11/20/02	N70°W	0.003	
02/26/03	N70°W	0.002	
05/09/03	N80°W	0.002	
08/19/03	S80°W	0.003	
10/28/03	S75°W	0.003	Monitoring wells were re-surveyed to msl on October 7, 2003
11/20/03	N80°W	0.006	
02/05/04	S80°W	0.001	
05/24/04	West (N90°W)	0.001	
09/27/04	S5°W	0.003	
12/02/04	N75°W	0.002	
03/09/05	N70°W	0.02	
06/16/05	NA ²	NA ²	

NA² - Not available, Well MW-6 in accessible Groundwater flow directions estimated to the nearest 5 degrees.

Table 1C: Groundwater Flow Direction and Gradient for Deep Wells 1099 Waterfront Drive, Eureka, California

Date	Groundwater Flow Direction (+/- 5°)	Groundwater Gradient (ft ./ ft.)	Notes
02/05/04	S55°E	0.005	MW-9D installed (surveyed on February 17, 2004)
05/24/04	S50°E	0.003	
09/27/04	NA ³	NA^3	
12/02/04	S55°E	0.01	
03/09/05	S65°E	0.01	
06/16/05	N30°W	0.001	

Footnotes

NA³ - Not available, Well MW-2 inaccessible

Groundwater flow directions estimated to the nearest 5 degrees.

Table 2: Groundwater Analytical Results - MW-1 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	11.17	2.66	8.51	3	38	3,000	<90	5,500
	06/21/99	11.17	3.05	8.12	<10	95	6,100	130	8,000
	09/27/99	11.17	3.59	7.58	9.3	<100	9,900	<100	9,800
	12/22/99	11.17	3.12	8.05	<10	200	3,700	<10	5,500
	03/16/00	11.17	2.81	8.36	<1.0	<1.0	730	<1.0	2,500
	06/09/00	11.17	3.18	7.99	1	<1.0	900	<1.0	3,300
	09/12/00	11.17	3.53	7.64	<1.0	18	300	22	1,100
	12/13/00	11.17	3.22	7.95	<1.0	<1.0	470	<1.0	1,600
	02/06/01	11.17	3.15	8.02	15 ¹	28	8 ²	<1.0	73
	05/16/01	11.17	3.21	7.96	<1.0	<1.0	<1.0	<1.0	55
	08/21/01	11.17	3.66	7.51	<1.0	<1.0	32	1.4	100
	11/13/01	11.17	3.46	7.71	NR	8.	1 ²	1.3	16
	02/12/02	11.17	2.92	8.25	<1.0	<1.0	<1.0	<1.0	<1.0
MW-1	05/14/02	11.17	3.04	8.13	<1.0	<1.0	<1.0	<1.0	1.4
	08/22/02	11.17	3.48	7.69	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	11.17	3.48	7.69	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	11.17	2.81	8.36	<1.0	<1.0	<1.0	<1.0	<1.0
	05/09/03	11.17	2.67	8.5	<1.0	<1.0	<1.0	<1.0	<1.0
	08/19/03	11.17	3.16	8.01	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	11.17	3.24	7.93	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	11.17	3.06	8.11	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	11.17	2.68	8.49	<1.0	<1.0	<1.0	<1.0	<1.0
	05/24/04	11.17	2.92	8.25	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	11.17	3.27	7.90	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	11.17	3.22	7.95	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/04	11.17	3.57	7.60	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	11.17	3.11	8.06	<1.0	<1.0	<1.0	<1.0	<1.0

Table 3: Groundwater Analytical Results - MW-2 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6-TCP (μg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	PCP (μg/L)
	03/27/99	10.53	6.05	4.48	< 0.1	0.88	16	< 0.1	35
	06/21/99	10.53	6.64	3.89	< 0.1	0.97	24	0.66	62
	09/27/99	10.53	7.61	2.92	<1.0	<1.0	<1.0	<1.0	<1.0
	12/22/99	10.53	5.89	4.64	<1.0	<1.0	3.8	<1.0	16
	03/16/00	10.53	6.05	4.48	<1.0	<1.0	<1.0	<1.0	<1.0
	06/08/00	10.53	7.49	3.04	<1.0	<1.0	<1.0	<1.0	<1.0
	09/12/00	10.53			Inaccessib	le, covered by multip	le layers of logs/lumb	er	
	12/13/00	10.53	6.36	4.17	<1.0	<1.0	<1.0	<1.0	<1.0
	02/06/01	10.53	6.25	4.28	<1.0 1	<1	.0 2	<1.0	<1.0
	05/16/01	10.53	6.60	3.93	<1.0	<1.0	<1.0	<1.0	<1.0
	8/21/01 3	10.53	7.52	3.01	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.53	6.01	4.52	NA	NA	NA	<1.0	<1.0
	02/12/02	10.53	6.12	4.41	NA	NA	NA	NA	NA
MW-2	05/14/02	10.53	7.53	3.00	<1.0	<1.0	<1.0	<1.0	<1.0
	08/22/02	10.53			Inaccessib	le, covered by multip	le layers of logs/lumb	er	
	11/20/02	10.53	6.13	4.40	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	10.53	5.30	5.23	NA	NA	NA	NA	NA
	05/09/03	10.53	6.07	4.46	<1.0	<1.0	<1.0	<1.0	<1.0
	08/19/03	10.53	6.53	4.00	NA	NA	NA	NA	NA
	10/28/03	10.53	5.70	4.83	NA	NA	NA	NA	NA
	11/20/03	10.53	6.12	4.41	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	10.53	5.49	5.04	NA	NA	NA	NA	NA
	05/24/04	10.53	7.12	3.41	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	10.53				Not sample	d ⁷		
	12/02/04	10.53	5.94	4.59	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	10.53	6.20	4.33	<1.0	<1.0	<1.0	<1.0	<1.0
	6/16/2005	10.53	6.65	3.88	<1.0	<1.0	<1.0	<1.0	<1.0

Table 4: Groundwater Analytical Results - MW-3 1099 Waterfront Drive, Eureka, California

Well ID	Date	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	7.82	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	06/21/99	3.50	< 0.1	< 0.1	< 0.1	< 0.1	0.31
	09/27/99	6.65	<1.0	<1.0	16	<1.0	0.31
	12/22/99	7.50	<1.0	<1.0	<1.0	<1.0	<1.0
	03/16/00	7.85	<1.0	<1.0	<1.0	<1.0	<1.0
	06/08/00		Inacce	essible; Well covered	by multiple layers of	logs/lumber	
	09/12/00		Inacce	essible; Well covered	by multiple layers of	logs/lumber	
	12/13/00	7.65	<1.0	<1.0	<1.0	<1.0	<1.0
	02/06/01	7.48	<1.0	<1	.0 2	<1.0	<1.0
MW-3	5/16/01 4	7.43	NA	NA	NA	NA	NA
101 00 -3	08/21/01	6.88	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	7.01	NA	NA	NA	NA	NA
	02/12/02	7.55	NA	NA	NA	NA	NA
	05/14/02	7.38	NA	NA	NA	NA	NA
	08/22/02		Inacce	essible; Well covered	by multiple layers of	logs/lumber	
	11/20/02	7.18	NA	NA	NA	NA	NA
	02/26/03	7.82	NA	NA	NA	NA	NA
	05/09/03	7.96	NA	NA	NA	NA	NA
	08/19/03	7.14	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03		Well	Abandoned Septemb	er 2003 and replaced	by MW-3R	

Table 5: Groundwater Analytical Results - MW-3R 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	10/28/03 4	10.49	3.22	7.27	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	10.49	2.83	7.66	NA	NA	NA	NA	NA
	02/05/04	10.49	2.24	8.25	NA	NA	NA	NA	NA
MW-3R	05/24/04	10.49	2.46	8.03	NA	NA	NA	NA	NA
1V1 VV - 31X	09/27/04	10.49	2.84	7.65	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.49	2.69	7.80	NA	NA	NA	NA	NA
	03/09/05	10.49	2.50	7.99	NA	NA	NA	NA	NA
	06/16/05	10.49	2.50	7.99	<1.0	<1.0	<1.0	<1.0	<1.0

Table 6: Groundwater Analytical Results - MW-4 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	10.06	2.14	7.92	< 0.1	< 0.1	0.12	< 0.1	0.3
	06/21/99	10.06	2.28	7.78	< 0.1	0.21	1.2	< 0.1	3.0
	09/27/99	10.06	2.53	7.53	<1.0	<1.0	<1.0	<1.0	<1.0
	12/22/99	10.06	2.29	7.77	<1.0	<1.0	<1.0	<1.0	<1.0
	03/16/00	10.06	2.01	8.05	<1.0	<1.0	<1.0	<1.0	<1.0
	06/09/00	10.06	2.28	7.78	<1.0	<1.0	<1.0	<1.0	<1.0
	09/12/00	10.06	2.45	7.61	<1.0	<1.0	<1.0	<1.0	1.8
	12/13/00	10.06	2.10	7.96	NA	NA	NA	NA	NA
	02/06/01	10.06	2.09	7.97	<1.0 1	<1	.0 2	<1.0	<1.0
	5/16/01 4	10.06	2.70	7.36	NA	NA	NA	NA	NA
	08/21/01	10.06	2.51	7.55	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.06	2.09	7.97	NA	NA	NA	NA	NA
	02/12/02	10.06	1.87	8.19	NA	NA	NA	NA	NA
MW-4	05/14/02	10.06	2.15	7.91	NA	NA	NA	NA	NA
	08/22/02	10.06	2.00	8.06	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.06	2.36	7.70	NA	NA	NA	NA	NA
	02/26/03	10.06	1.99	8.07	NA	NA	NA	NA	NA
	05/09/03	10.06	1.86	8.20	NA	NA	NA	NA	NA
	08/19/03	10.06	2.15	7.91	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.06	2.00	8.06	NA	NA	NA	NA	NA
	11/20/03	10.06	1.92	8.14	NA	NA	NA	NA	NA
	02/05/04	10.06	1.91	8.15	NA	NA	NA	NA	NA
	05/24/04	10.06	2.03	8.03	NA	NA	NA	NA	NA
	09/27/04	10.06	2.27	7.79	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.06	2.27	7.79	NA	NA	NA	NA	NA
	03/09/05	10.06	2.13	7.93	NA	NA	NA	NA	NA
	6/16/2005	10.06	2.11	7.95	<1.0	<1.0	<1.0	<1.0	<1.0

Table 7: Groundwater Analytical Results - MW-5 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	03/27/99	10.03	1.43	8.60	< 0.1	< 0.1	< 0.1	< 0.1	0.14
	06/21/99	10.03	2.81	7.22	< 0.1	< 0.1	0.38	< 0.1	1
	09/27/99	10.03	3.19	6.84	<1.0	<1.0	<1.0	<1.0	<1.0
	12/22/99	10.03	2.30	7.73	<1.0	<1.0	<1.0	<1.0	<1.0
	03/16/00	10.03	1.15	8.88	<1.0	<1.0	<1.0	<1.0	<1.0
	06/09/00	10.03	2.31	7.72	<1.0	<1.0	<1.0	<1.0	<1.0
	09/12/00	10.03	3.18	6.85	<1.0	<1.0	<1.0	<1.0	<1.0
	12/13/00	10.03	2.24	7.79	<1.0	<1.0	<1.0	<1.0	<1.0
	02/06/01	10.03	2.33	7.70	<1.0 1	<1	.0 2	<1.0	<1.0
	5/16/014	10.03	2.33	7.70	NA	NA	NA	NA	NA
	08/21/01	10.03	3.24	6.79	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.03	1.90	8.13	NA	NA	NA	NA	NA
	02/12/02	10.03	2.14	7.89	NA	NA	NA	NA	NA
MW-5	05/14/02	10.03	2.65	7.38	NA	NA	NA	NA	NA
	08/22/02	10.03	3.10	6.93	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.03	2.74	7.29	NA	NA	NA	NA	NA
	02/26/03	10.03	2.09	7.94	NA	NA	NA	NA	NA
	05/09/03	10.03	1.77	8.26	NA	NA	NA	NA	NA
	08/19/03	10.03	2.66	7.37	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.03	2.54	7.49	NA	NA	NA	NA	NA
	11/20/03	10.03	1.92	8.11	NA	NA	NA	NA	NA
	02/05/04	10.03	1.65	8.38	NA	NA	NA	NA	NA
	05/24/04	10.03	2.43	7.60	NA	NA	NA	NA	NA
	09/27/04	10.03	2.74	7.29	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.03	2.38	7.65	NA	NA	NA	NA	NA
	03/09/05	10.03	2.35	7.68	NA	NA	NA	NA	NA
	06/16/05	10.03	2.50	7.53	<1.0	<1.0	<1.0	<1.0	<1.0

Table 8: Groundwater Analytical Results - MW-6 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	02/06/01	10.71	2.75	7.96	4.5	<1	.0 2	<1.0	<1.0
	05/16/01	10.71	2.71	8.00	<1.0	<1.0	<1.0	<1.0	6.1
	08/21/01	10.71	3.24	7.47	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.71	2.87	7.84	NR	<1	.0 2	<1.0	<1.0
	02/12/02	10.71	2.41	8.30	<1.0	<1.0	<1.0	<1.0	<1.0
	05/14/02	10.71	2.51	8.20	<1.0	<1.0	<1.0	<1.0	<1.0
	08/22/02	10.71	2.98	7.73	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.71	2.96	7.75	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	10.71	2.31	8.40	<1.0	<1.0	<1.0	<1.0	<1.0
MW-6	05/09/03	10.71	2.16	8.55	<1.0	<1.0	<1.0	<1.0	<1.0
	08/19/03	10.71	2.59	8.12	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.71	2.67	8.04	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	10.71	2.49	8.22	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	10.71	2.18	8.53	<1.0	<1.0	<1.0	<1.0	<1.0
	06/02/04 6	10.71	2.38	8.33	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	10.71	2.74	7.97	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.71	2.70	8.01	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	10.71	2.56	8.15	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	10.71	NM	NM	NA	NA	NA	NA	NA

Table 9: Groundwater Analytical Results - MW-7 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	02/06/01	10.76	2.79	7.97	<1.0	<1	.0 2	<1.0	<1.05
	05/16/01	10.76	2.78	7.98	<1.0	<1.0	<1.0	<1.0	<1.0
	08/21/01	10.76	3.19	7.57	<1.0	<1.0	<1.0	<1.0	<1.0
	11/13/01	10.76	3.10	7.66	NR	<1	<1.02		<1.0
	02/12/02	10.76	2.52	8.24	<1.0	<1.0	<1.0	<1.0	<1.0
	05/14/02	10.76	2.63	8.13	<1.0	<1.0	<1.0	<1.0	<1.0
	08/22/02	10.76	3.06	7.7	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/02	10.76	3.03	7.73	<1.0	<1.0	<1.0	<1.0	<1.0
	02/26/03	10.76	2.37	8.39	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	05/09/03	10.76	2.24	8.52	<1.0	<1.0	<1.0	<1.0	<1.0
	08/19/03	10.76	2.79	7.97	<1.0	<1.0	<1.0	<1.0	<1.0
	10/28/03	10.76	2.89	7.87	<1.0	<1.0	<1.0	<1.0	<1.0
	11/20/03	10.76	2.69	8.07	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	10.76	2.29	8.47	<1.0	<1.0	<1.0	<1.0	<1.0
	06/02/04 6	10.76	2.50	8.26	<1.0	<1.0	<1.0	<1.0	<1.0
	09/27/04	10.76	2.86	7.90	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	10.76	2.79	7.97	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	10.76	2.62	8.14	<1.0	<1.0	<1.0	<1.0	<1.0
	6/16/2005	10.76	2.64	8.12	<1.0	<1.0	<1.0	<1.0	<1.0

Table 10: Groundwater Analytical Results - MW-8D 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	2,4,6- Trichlorophenol (µg/L)	2,3,5,6- Tetrachlorophenol (µg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (µg/L)
	10/28/03	11.15	6.13	5.02	<1.0	<1	.5 ²	<1.0	6.6
	11/20/03	11.15	6.57	4.58	<1.0	<1.0	<1.0	<1.0	<1.0
	02/05/04	11.15	5.96	5.19	<1.0	<1.0	<1.0	<1.0	<1.0
MW-8D	05/24/04	11.15	7.63	3.52	<1.0	<1.0	<1.0	<1.0	<1.0
M W -0D	09/27/04	11.15	6.88	4.27	<1.0	<1.0	<1.0	<1.0	<1.0
	12/02/04	11.15	6.42	4.73	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	11.15	6.72	4.43	<1.0	<1.0	<1.0	<1.0	<1.0
	06/16/05	11.15	7.25	3.90	<1.0	<1.0	<1.0	<1.0	<1.0

Table 11: Groundwater Analytical Results - MW-9D 1099 Waterfront Drive, Eureka, California

Well ID	Date	Top of Casing Elevation (ft>msl)	Depth to Groundwater (feet)	Water Level Elevation (feet > msl)	7 7	2,3,5,6- Tetrachlorophenol (μg/L)	2,3,4,6- Tetrachlorophenol (µg/L)	2,3,4,5- Tetrachlorophenol (µg/L)	Pentachlorophenol (μg/L)
	02/05/04	11.01	5.86	5.15	<1.0	<1.0	1.9	<1.0	12
	05/24/04	11.01	7.53	3.48	<1.0	<1.0	<1.0	<1.0	<1.0
MW-9D	09/27/04	11.01	6.78	4.23	<1.0	<1.0	<1.0	<1.0	<1.0
WI W -9D	12/02/04	11.01	6.32	4.69	<1.0	<1.0	<1.0	<1.0	<1.0
	03/09/05	11.01	6.75	4.26	<1.0	<1.0	<1.0	<1.0	<1.0
	6/16/2005	11.01	7.09	3.92	<1.0	<1.0	<1.0	<1.0	<1.0

Footnotes

- 1 Analytical method yields total trichlorophenols as conducted by Analytical Sciences
- 2 Co-elution
- 3 Well converted to semi-annual sampling program per 3/25/01 NCRWQCB letter
- 4 Well converted to annual sampling program per 3/15/01 NCRWQCB letter
- 5 Laboratory reports presence of pentachlorophenol below normal laboratory reporting limits
- 6 Wells inaccessible 5/27/04. Depth to water measured 6/2/04
- 7 Well inaccessible.
- NA Not Analyzed
- NR Not Reported
- NM Not Measured

Table 12: Groundwater Analytical Results - Trihalomethanes 1099 Waterfront Drive, Eureka, California

Date	Well Identification Number	Chloroform	Dibromodichloromethane	Dibromochloromethane	Bromoform
	MW-1	<1.0	<1.0	<1.0	<1.0
	MW-2	<1.0	<1.0	<1.0	<1.0
	MW-3R	<1.0	<1.0	<1.0	<1.0
	MW-4	<1.0	<1.0	<1.0	<1.0
6/16/2005	MW-5	<1.0	<1.0	<1.0	<1.0
	MW-6	NA	NA	NA	NA
	MW-7	<1.0	<1.0	<1.0	<1.0
	MW-8D	<1.0	<1.0	<1.0	<1.0
	MW-9D	<1.0	<1.0	<1.0	<1.0

NA - Not Analyzed, well inaccessible

Appendix A Well Purge Records 16 June 2005

	S E N	IGII	NEEF	R S		WELL PURGE RECORD 2005 - 2nd Quarter JOB NUMBER SITE					WELL NUMBER MW- 1	
PROJECT	PROJECT Schmidbauer Lumber						R 316.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner	
SUBMERS BAILER	PURGING SAMPLING METHOD HAND PUMP SUBMERSIBLE PUMP X						PURGING CRITERIA Minimum of 3 wetted casing volumes (or 5 gallons minimum for 2" dia. wells), until water parameters (pH, temp., cond.) have stabilized (±10%), or until dry. REMARKS * Oil/water interface probe used to check for NAPLs.					
CASING	CASING DIAMETER (Dc): 4.0 DEPTH TO: WATER (h): 3.11						SAMPLING: R:			6/16/2005 Rain		
NAPL: NAPL TH SCREEN	IICKNESS:	3.1 n.a n.a	·* -0.53 ·*	h	H H TD _c	TAGGED PURGE V	WATER LEV WELL DEPT OLUME (3 C O WATER FO	TH FROM TO ASING VOLU	C:	3.11 / 3.11 10 12.5 gallons 4.38 ft. below TOC		
BOTTO TOTAL Diameters in	TOP: 3.0 BOTTOM: 10.0 TOTAL DEPTH (TDc): 10.00 Diameters in (inches): Depths in (feet) ONE CASING VOLUME:					DEPTH TO WATER FOR 80% RECHARGE: TIME OF SAMPLING: DEPTH TO WATER AT TIME OF SAMPLING: APPEARANCE OF SAMPLE: LABORATORY:				16:27 3.24 ft. below TOC Clear Analytical Sciences		
[ID _C - II][PURGIN		4.15 galloi	CUML	JLATIVE REMOVED	SEE CHA		CHARACTE		TICAL INFOR	COMMENTS	
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)		
6/16/05	16:13	16:14	1	1	0.24	7.83	0.310	176	16.3	0.15		
6/16/05	16:14	04:16	2	3	0.72	7.67	0.267	10	17.7	0.05		
6/16/05	16:16	16:18	2	5	1.20	7.63	0.272	10	18.5	0.05		
6/16/05	16:18	16:20	2	7	1.69	7.61	0.298	10	18.5	0.05		

S C S	S E N	IGI1	NEEF	RS			PURGE		RD		WELL NUMBER MW- 2 RECORDED BY
PROJECI	S	Schmidbau	ier Lumbe	r			316.00		Vaterfront		Bruce Taverner
			GING THOD	SAMPLIN METHOL		PURGING CI for 2" dia (±10%), (RITERIA Mi . wells), unto or until dry.	til water pa	wetted cas rameters ()	sing volume pH, temp., o	s (or 5 gallons minimur cond.) have stabilized
HAND PUN SUBMERS BAILER OTHER	MP IBLE PUMP		X	X		* Oil/wat	er interface	probe used	l to check f	or NAPLs.	
CASING I	DIAMETER	(D _C):2.0)	→ D _C	-	DATE OF	SAMPLING:			6	6/16/2005
DEPTH T WATER		6.6	1 ₩		GROUND (E)	WEATHE					Rain
NAPL:	X (II).	n.a		₹ ₩			WATER LEV			6	.61 / 6.61
	ICKNESS:	n.a	-0.47				WELL DEPT OLUME (3 C			6	19.73 3 gallons
SCREEN	DEPTH:			h \(\)	H		OLUME (3 C.		′ —		ft. below TOC
TOP:		15.	0		$\int TD_{\rm C}$		SAMPLING:	OT 00 70 TKE	717 (TOL	0.101	17:55
BOTTO	DM:	20.	0	<u> </u>			O WATER A	T TIME OF S	AMPLING:	6.56 f	ft. below TOC
	EPTH (TD ₀		00		SCREEN INTERVAL	APPEARA	ANCE OF SAI	MPLE:			Clear
	n (inches) : De					LABORA ⁻	ΓORY:			Analy	tical Sciences
	NG VOLUME 3.14 (D _c / 2) ²]		2.11 gallor	ns	•	SEE CHA	IN OF CUST	ODY FORM I	OR ANALY	TICAL INFOR	RMATION.
	PURGIN	IG DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE -	BEGIN	FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
6/16/05	17:48	17:49	1	1	0.47	7.90	1.900	87	14.6	0.05	
6/16/05	17:49	17:50	2	3	1.42	7.63	1.880	10	14.5	0.01	
6/16/05	17:50	17:51	2	5	2.37	7.56	1.880	10	14.4	0.02	
6/16/05	17:51	17:52	2	7	3.32	7.52	1.870	10	14.4	0.02	

	S E N	I G I I	NEEF	R S		20	PURGE 005 - 2nd Qu	uarter	RD		WELL NUMBER MW- 3R
PROJECT	•	Schmidhau	ıer Lumbe	r		JOB NUMBE.	R 3 316.00	SITE 1000 V	Vaterfront		RECORDED BY Bruce Taverner
					· ·						
HAND PUI SUBMERS BAILER	MP SIBLE PUMP	<i>MET</i>	GING CHOD	SAMPLIN METHOL) 	(±10%), (a. wells), und or until dry. er interface				s (or 5 gallons minimur cond.) have stabilized
OTHER											
CASING	DIAMETER	(D _c):2.0)	\rightarrow D_{c}		DATE OF	SAMPLING:		_	6	6/16/2005
DEPTH 1		0.5	. •		GROUND SURFACE (E)	WEATHE	R:		_		Rain
WATE NAPL:	K (n):	2.5 n.a	*	▼ 🖺		TAGGED	WATER LEV				2.5 / 2.5
	ICKNESS:	n.a	-0.51				WELL DEPT				12.75
SCREEN				h	H		OLUME (3 C				9 gallons
TOP:		3.0)	-	TD_{c}		SAMPLING:	UR 80% REC	HARGE:	4.50	ft. below TOC 15:46
вотто	OM:	13.	0	<u>▼</u>	₩		O WATER A	T TIME OF S		2.61	ft. below TOC
TOTAL D	EPTH (TD _c	.): 13.0	00		SCREEN INTERVAL		ANCE OF SAI		AWFLING.	2.01	Clear
Diameters i	n (inches) : De	epths in (feet)			INTERVAL	LABORA		VII LL.		Analy	tical Sciences
	NG VOLUME 3.14 (D _C / 2) ²]		1.63 gallor	ns :::::	.] ——		IN OF CUST	ODY FORM I	OR ANALY	•	
	PURGIN	G DATA			JLATIVE REMOVED		WATER	CHARACTE	ERISTICS		COMMENTS
DATE	TIM		WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
6/16/05	15:36	15:37	1	1	0.61	7.66	0.263	887	14.8	0.00	
6/16/05	15:37	15:39	2	3	1.84	7.38	0.289	164	14.5	0.05	
6/16/05	15:39	15:41	2	5	3.07	7.28	0.306	26	14.6	0.06	
				I	1	I .	1			1	I

	SEN	IGI1	NEEF	? S		20	PURGE 05 - 2nd Qu	uarter	RD		WELL NUMBER MW- 4
PROJECT	S	Schmidbau	ıer Lumbe	er		JOB NUMBE. 01203	R 316.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP		GING 'HOD	SAMPLING METHOE		(±10%), (RITERIA Mi . wells), und or until dry. er interface	til water pa	rameters (pH, temp., o	s (or 5 gallons minimus cond.) have stabilized
CASING DEPTH 1 WATE NAPL: NAPL TH SCREEN TOP: BOTTO TOTAL D Diameters in	R (h): IICKNESS: DEPTH:	2.1 n.a n.a 3.0 10. 10.cepths in (feet)	1		GROUND (E) SURFACE H TD _C SCREEN INTERVAL	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORA	WATER LEV WELL DEPT OLUME (3 C O WATER FO SAMPLING: O WATER A' NICE OF SAI	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	C:	3. 3.60 f	Rain 11 / 2.11 8.65 6 gallons it. below TOC 14:48 it. below TOC ery cloudy tical Sciences RMATION.
DATE	PURGIN TIM BEGIN	G DATA ME FINISH	WATER REMOVED (GAL)		CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
6/16/05	14:40	14:41	1	1	0.82	7.70	0.433	560	16.4	0.03	
6/16/05	14:41	14:42	2	3	2.47	7.60	0.350	400	16.2	0.02	
6/16/05	14:42	14:43	2	5	4.11	7.65	0.280	160	15.9	0.02	
,											
,											
			L						I	1	I

	S E N	IGIN	NEEF	8 S		20	PURGE 05 - 2nd Qu	ıarter	RD		WELL NUMBER MW- 5
PROJECT	S	Schmidbau	ıer Lumbe	er		JOB NUMBE. 01203	R 3 16.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
BAILER	MP SIBLE PUMP		GING 'HOD	SAMPLING METHOE		(±10%), (RITERIA Min. wells), und or until dry. er interface	til water pa	rameters (pH, temp., o	s (or 5 gallons minimu cond.) have stabilized
DEPTH 1 WATE NAPL: NAPL TH SCREEN TOP: BOTTC TOTAL C Diameters in	R (h): ICKNESS: DEPTH: DM: DEPTH (TD _c n (inches): De	2.5 n.a n.a 3.0 10. 10.0: 10.0:epths in (feet)	0 * -0.47	D _C	GROUND (E) SURFACE (E) H TD _C SCREEN INTERVAL	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORA	WATER LEV WELL DEPT OLUME (3 C O WATER FO SAMPLING: O WATER A' ANCE OF SAI FORY:	H FROM TO ASING VOLU DR 80% REC I TIME OF S MPLE:	C:	3. 3.91 f 2.56 f	Rain 2.5 / 2.5 9.52 4 gallons ft. below TOC 14:15 ft. below TOC Clear tical Sciences
		G DATA		CUML	JLATIVE	SLL OF IA		CHARACTE		TICAL INI OF	COMMENTS
DATE	TIN		WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
6/16/05	14:05	14:06	1	1	0.87	7.67	0.292	511	17.0	0.18	
6/16/05	14:06	14:07	2	3	2.62	7.37	0.313	130	17.2	0.00	
					1		1	1	1	1	

	SEN	I G I N	NEEF	R S		20	PURGE 005 - 2nd Qu	uarter	RD		WELL NUMBER MW-7
PROJECT	S	Schmidbau	ıer Lumbe	r		JOB NUMBE. 01203	R 3 316.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
HAND PUI SUBMERS BAILER OTHER	MP SIBLE PUMP		GING HOD	SAMPLIN METHOL		(±10%), (RITERIA Min. wells), unto until dry. er interface				es (or 5 gallons minimun cond.) have stabilized
CASING DEPTH WATE NAPL: NAPL TH SCREEN TOP: BOTTO TOTAL D Diameters if	R (h): IICKNESS: I DEPTH:	2.6 n.a n.a 3.0 10. 10.cepths in (feet)	4 * * -0.54		GROUND SURFACE (E)	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORA	WATER LEV WELL DEPT OLUME (3 C. O WATER FO SAMPLING: O WATER A	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	C:	3. 4.001 2.691 Analy	Rain 2.64 / 2.64 9.61 3. gallons ft. below TOC 18:30 ft. below TOC Clear ttical Sciences RMATION.
	PURGIN	G DATA			JLATIVE REMOVED		WATER	CHARACTE	RISTICS		COMMENTS
DATE	TIM	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	pН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
6/16/05	18:21	18:22	1	1	0.90	7.91	0.349	758	14.4	0.25	
6/16/05	18:22	18:23	2	3	2.70	7.54	0.308	218	14.3	0.09	
Keport Form: WELL PURCHE RECORD 2 Project ID: 01.2033 6.00 Crd Date: 6.21/2005											
NOT FORM: WELL											
Kej											

	SEN	I G I I	NEEF	RS		20	PURGE 05 - 2nd Qu	uarter	RD		WELL NUMBER MW-8D
PROJECT	S	Schmidbau	ıer Lumbe	r		JOB NUMBE. 01203	R 316.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
HAND PUI SUBMERS BAILER OTHER		PUR MET	GING 'HOD	SAMPLING METHOL		PURGING CH for 2" dia (±10%), G REMARKS	RITERIA Mi	sing volume pH, temp., o	s (or 5 gallons minimus cond.) have stabilized		
CASING DEPTH 1 WATE NAPL: NAPL TH SCREEN TOP: BOTTO TOTAL D Diameters in	R (h): IICKNESS: DEPTH:	7.2 n.a n.a 15. 20. 20.cepths in (feet)	5 * -0.55 * 0 0		GROUND (E) SURFACE H TD _C SCREEN INTERVAL	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORA	WATER LEV WELL DEPT OLUME (3 C O WATER FO SAMPLING: O WATER A' NICE OF SAI	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	C:	7 6. 9.69 f 7.22 f Slig	7/16/2005 Rain 25 / 7.25 19.58 0 gallons t. below TOC 16:57 t. below TOC phtly cloudy tical Sciences
	PURGIN			CUML	JLATIVE REMOVED	OLL OIL		CHARACTE		110/12 1141 01	COMMENTS
DATE	TIN	ME FINISH	WATER REMOVED (GAL)	GAL	CASING VOLUMES	рН	CONDUC- TIVITY (mmhos/cm)	TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	
6/16/05	16:48	16:49	1	1	0.50	7.48	1.860	711	15.5	0.12	
6/16/05	16:49	16:51	2	3	1.51	7.36	2.100	238	15.0	0.09	
6/16/05	16:51	16:53	2	5	2.51	7.35	2.100	133	15.0	0.07	
6/16/05	16:53	16:54	2	7	3.52	7.34	2.140	58	15.0	0.08	
						-					
						 					
					1				<u> </u>	1	<u> </u>

		S E N	I G I I	NEEF	R S		20	PURGE 105 - 2nd Qu	uarter	RD		WELL NUMBER MW- 9D
P	ROJECT	s	Schmidbau	ıer Lumbe	r		JOB NUMBER 01203	R 3 16.00	SITE 1099 V	Vaterfront		RECORDED BY Bruce Taverner
	HAND PUN SUBMERS BAILER OTHER	MP IBLE PUMP		GING CHOD	SAMPLIN METHOL		(±10%), o	or until dry. er interface				es (or 5 gallons minimum cond.) have stabilized MLE = Meter Limit
	DEPTH T WATEI NAPL: NAPL TH SCREEN TOP: BOTTC TOTAL D Diameters in	R (h): ICKNESS: DEPTH: DM: EPTH (TDc n (inches): De	7.0 n.a n.a 15. 20. 20.sepths in (feet)	9 * -0.49 5 5	D _c	GROUND (E) H TD _C SCREEN INTERVAL	WEATHE TAGGED TAGGED PURGE V DEPTH T TIME OF DEPTH T APPEARA LABORAT	WATER LEV WELL DEPT OLUME (3 C. O WATER FO SAMPLING: O WATER A'	TH FROM TO ASING VOLU OR 80% REC T TIME OF S MPLE:	C:	6. 9.67 7.06 Sliq Analy	Rain 7.09 / 19.86 .3 gallons ft. below TOC 17:29 ft. below TOC ghtly cloudy tical Sciences RMATION.
	DATE	PURGIN TIN BEGIN		WATER REMOVED (GAL)		CASING VOLUMES	рН	WATER CONDUC- TIVITY (mmhos/cm)	CHARACTE TURBIDITY (NTU)	TEMPER- ATURE (°C)	DISSOLVED OXYGEN (ppm)	COMMENTS
H	6/16/05	17:21	17:22	1	1	0.47	7.46	2.630	*MLE	15.0	0.01	
H	6/16/05	17:22	17:23	2	3	1.42	7.14	2.320	465	15.0	0.01	
\vdash	6/16/05	17:23	17:24	2	5	2.37	7.29	2.220	194	15.0	0.14	
	6/16/05	17:24	17:25	2	7	3.32	7.29	2.210	92	15.0	0.08	
\$11/2005												
Date: 6												
.GPJ _												
SCI ID: 01203316.00												
Proje -												
ORD 2												
KEC												
Report Form: WELL PURGE RECORD 2 Project ID: 01203316.00.GPJ Date: 6/21/2005												
oort Form.												
Rep												

Appendix B Analytical Science Report #5061703 29 June 2005

Report Date: June 29, 2005

Karin Fresnel SCS Engineers 3645 Westwind Blvd. Santa Rosa, CA 95403

LABORATORY REPORT

Project Name: Schmidbauer 01203316.00

Lab Project Number: 5061703

This 10 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D. Laboratory Director

Chlorinated Phenols in Water

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
30305	MW-1	2,3,4-trichlorophenol	ND	1.0
		2,4,5-trichlorophenol	ND	1.0
		2,4,6-trichlorophenol	ND	1.0
		2,3,4,6-tetrachlorophenol	ND	1.0
		2,3,5,6-tetrachlorophenol	ND	1.0
		2,3,4,5-tetrachlorophenol	ND	1.0
		Pentachlorophenol (PCP)	ND	1.0
Date Sam		Date Extracted: 06/20/05	QC Batch #:S0423	
Date Rece	eived: 06/17/05	Date Analyzed: 06/20/05	Method: Canad	dian Pulp

Lab #	Sample ID	Analysis	Result (ug/	L) RDL (ug/L)
30310	MW-7	2,3,4-trichlorophenol	ND	1.0
		2,4,5-trichlorophenol	ND	1.0
		2,4,6-trichlorophenol	ND	1.0
		2,3,4,6-tetrachlorophenol	ND	1.0
		2,3,5,6-tetrachlorophenol	ND	1.0
		2,3,4,5-tetrachlorophenol	ND	1.0
		Pentachlorophenol (PCP)	ND	1.0
Date Sam	pled: 06/16/05	Date Extracted: 06/20/05	QC Batch #: S	0423
Date Rece	eived: 06/17/05	Date Analyzed: 06/20/05	Method: C	anadian Pulp

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
30311	MW-8D	2,3,4-trichlorophenol	ND	1.0
		2,4,5-trichlorophenol	ND	1.0
		2,4,6-trichlorophenol	ND	1.0
		2,3,4,6-tetrachlorophenol	ND	1.0
		2,3,5,6-tetrachlorophenol	ND	1.0
		2,3,4,5-tetrachlorophenol	ND	1.0
		Pentachlorophenol (PCP)	ND	1.0
Date Sam Date Rece		Date Extracted: 06/20/05 Date Analyzed: 06/20/05	QC Batch #: S0423 Method: Canadi	an Pulp

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
30312	MW-9D	2,3,4-trichlorophenol	ND	1.0
		2,4,5-trichlorophenol	ND	1.0
		2,4,6-trichlorophenol	ND	1.0
		2,3,4,6-tetrachlorophenol	ND	1.0
		2,3,5,6-tetrachlorophenol	ND	1.0
		2,3,4,5-tetrachlorophenol	ND	1.0
		Pentachlorophenol (PCP)	ND	1.0
Date Samp	oled: 06/16/05	Date Extracted: _06/20/05	QC Batch #: S0423	
Date Recei	ived: 06/17/05	Date Analyzed:06/20/05	Method: Canadi	an Pulp

Total Trihalomethanes by GC/MS in Water

Lab#	Sample ID	Compoun	d Name	Result R (ug/L) (ug/L)				
30305	MW-1	chloroform (THM1)		ND	1.0			
		bromodichlorometh	ane (THM2)	ND	1.0			
		dibromochlorometh	ane (THM3)	ND	1.0			
		bromoform (THM4)		ND	1.0			
		Total Trihalometha	nes (TTHMs)	ND				
Su	ırrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)			
dibromoflu	oromethane (20)	20.0	100	70 – 1	30			
toluene-d ₈	(20)	19.1	95.5	70 – 1	30			
4-bromoflu	orobenzene (20)	18.3	91.5	70 – 1	30			
Date Samp	led: 06/16/05	Date Analyzed: 06/2	1/05	QC Batch #: _	5605			
Date Receiv	/ed: 06/17/05	Method: EPA	8260B					

Lab #	Sample ID	Compour	nd Name	Result (ug/L)	RDL (ug/L)
30306	MW-2	chloroform (THM1)		ND	1.0
		bromodichlorometh	nane (THM2)	ND	1.0
		dibromochlorometh	nane (THM3)	ND	1.0
		bromoform (THM4)		ND	1.0
		Total Trihalometha	anes (TTHMs)	ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	oromethane (20)	20.0	100	70 – 1	30
toluene-d ₈		19.1	95.5	70 – 1	30
4-bromoflu	orobenzene (20)	18.1	90.5	70 – 1	30
Date Samp	led: 06/16/05	Date Analyzed: 06/2	21/05	QC Batch #:	5605
Date Receiv	/ed: <u>06/17/05</u>	Method: EPA	A 8260B		

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
30307	MW-3R	chloroform (THM1)		ND	1.0
		bromodichlorometh	ane (THM2)	ND	1.0
		dibromochlorometh	ane (THM3)	ND	1.0
		bromoform (THM4)		ND	1.0
		Total Trihalometha	nes (TTHMs)	ND	1.0
S	urrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	uoromethane (20)	19.9	99.5	70 – 1	30
toluene-d ₈	` '	19.0	95.0	70 – 1	
-	uorobenzene (20)	18.2	91.0	70 – 1	30
Date Samp		,	1/05 8260B	QC Batch #:	5605

Lab #	Sample ID	Compour	nd Name	Result (ug/L)	RDL (ug/L)
30308	MW-4	chloroform (THM1)		ND	1.0
		bromodichlorometh	nane (THM2)	ND	1.0
		dibromochlorometh	nane (THM3)	ND	1.0
		bromoform (THM4)		ND	1.0
		Total Trihalometha	anes (TTHMs)	ND	1.0
Sı	urrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	oromethane (20)	19.7	98.5	70 – 1	30
toluene-d ₈	` '	19.1	95.5	70 – 1	30
4-bromoflu	uorobenzene (20)	18.2	91.0	70 – 1	30
Date Samp	oled: 06/16/05	Date Analyzed: 06/21/05		QC Batch #:	5605
Date Recei	ved: 06/17/05	Method: EPA	\ 8260B		

Lab#	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
30309	MW-5	chloroform (THM1)		ND	1.0
		bromodichlorometh	ane (THM2)	ND	1.0
		dibromochlorometh	ane (THM3)	ND	1.0
		bromoform (THM4)		ND	1.0
		Total Trihalometha	nes (TTHMs)	ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	oromethane (20)	19.7	98.5	70 – 1	30
toluene-d ₈	(20)	19.1	95.5	70 – 1	30
4-bromoflu	orobenzene (20)	18.1	90.5	70 – 1	30
Date Samp	led: 06/16/05	Date Analyzed: 06/2	11/05	QC Batch #:	5605
Date Receiv	/ed: 06/17/05	Method: EPA	8260B		

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
30310	MW-7	chloroform (THM1)		ND	1.0
		bromodichlorometh	ane (THM2)	ND	1.0
		dibromochlorometh	ane (THM3)	ND	1.0
		bromoform (THM4)		ND	1.0
		Total Trihalometha	nes (TTHMs)	ND	1.0
Su	ırrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	oromethane (20)	19.9	99.5	70 – 1	30
toluene-d ₈	` ,	19.1	95.5	70 – 1	30
-	orobenzene (20)	18.2	91.0	70 – 1	30
Date Samp		Date Analyzed: _06/21/05		QC Batch #:	5605
Date Receiv	ved: 06/17/05	Method: EPA	. 8260B		

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
30311	MW-8D	chloroform (THM1)		ND	1.0
		bromodichlorometh	ane (THM2)	ND	1.0
		dibromochlorometh	ane (THM3)	ND	1.0
		bromoform (THM4)		ND	1.0
		Total Trihalometha	nes (TTHMs)	ND	1.0
Su	ırrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	oromethane (20)	19.8	99.0	70 – 1	30
toluene-d ₈	(20)	19.0	95.0	70 – 1	
4-bromoflu	orobenzene (20)	18.2	91.0	70 – 1	30
Date Samp		· · · · · · · · · · · · · · · · · · ·	1/05 8260B	QC Batch #:	5605

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
30312	MW-9D	chloroform (THM1)		ND	1.0
		bromodichlorometh	ane (THM2)	ND	1.0
		dibromochlorometh	ane (THM3)	ND	1.0
		bromoform (THM4)	,	ND	1.0
		Total Trihalometha	nes (TTHMs)	ND	1.0
Su	ırrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
dibromoflu	oromethane (20)	19.6	98.0	70 – 1	30
toluene-d ₈	` ,	19.1	95.5	70 – 1	
_	iorobenzene (20)	18.1	90.5	70 – 1	30
Date Samp		Date Analyzed: 06/2 Method: EPA	1/05 8260B	QC Batch #:	5605

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: \$0423 Lab Project #: 5061703

Sample ID	Compound	Result (ug/L)
MB	2,3,5,6-tetrachlorophenol	ND
MB	2,3,4,6-tetrachlorophenol	ND
MB	2,3,4,5-tetrachlorophenol	ND
MB	pentachlorophenol	ND

Sample		Result	Spike	%
ID	Compound	(ug/L)	Level	Recv.
LCS	2,3,5,6-tetrachlorophenol	4.94	5.0	98.8
LCS	2,3,4,6-tetrachlorophenol	5.34	5.0	107
LCS	2,3,4,5-tetrachlorophenol	5.00	5.0	100
LCS	pentachlorophenol	5.47	5.0	109

Sample ID	Compound	Result (ug/L)	Spike Level	% Recv.	RPD
LCSD	2,3,5,6-tetrachlorophenol	5.07	5.0	101	2.0
LCSD	2,3,4,6-tetrachlorophenol	5.40	5.0	108	1.1
LCSD	2,3,4,5-tetrachlorophenol	5.00	5.0	100	0.0
LCSD	pentachlorophenol	5.87	5.0	117	7.1

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5605 **Lab Project #:** 5061703

Sample ID	Compound Name	Result (ug/L)
MB MB MB MB	1,1-dichloroethene benzene trichloroethene toluene chlorobenzene	ND ND ND ND

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.2	101	70 – 130
toluene-d ₈ (20)	19.0	95.0	70 – 130
4-bromofluorobenzene (20)	18.2	91.0	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
30305	CMS	1,1-dichloroethene	25.6	25.0	102
	CMS	benzene	23.6	25.0	94.4
	CMS	trichloroethene	22.6	25.0	90.4
	CMS	toluene	24.9	25.0	99.6
	CMS	chlorobenzene	24.8	25.0	99.2

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.0	100	70 – 130
toluene-d ₈ (20)	19.1	95.5	70 – 130
4-bromofluorobenzene (20)	18.4	92.1	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
30305	CMSD	1,1-dichloroethene	25.4	25.0	101	0.78
	CMSD	benzene	23.4	25.0	93.6	0.85
	CMSD	trichloroethene	22.2	25.0	88.8	1.8
	CMSD	toluene	24.6	25.0	98.4	1.2
	CMSD	chlorobenzene	24.4	25.0	97.6	1.6

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	19.9	99.6	70 – 130
toluene-d ₈ (20)	19.1	95.5	70 – 130
4-bromofluorobenzene (20)	18.0	90.0	70 – 130

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

01203316.00

SCS ENGINEERS PROJECT NUMBER:

GEOTRACKER EDF:

COOLER TEMPERATURE

SAME DAY

1099 WATERSROWI

Eureka, CA

COMPANY NAME: Schmidbauck

ADDRESS: 3645 WESTWIND BOULEVARD SANTA ROSA, CA 95403 KARIN FRESNE

CONTACT:

COMPANY NAME: SCS ENGINEERS

CONTACT:

CHAIN OF CUSTODY LAB PROJECT NUMBER: 506/70

				LAB SAMPLE #	30206	70.	3 6	30%	'n		0		7			\$ 1.00 m	Particular.			B	į
900	ပ		_	SAM.	201	202/	10/2	2000	3/2/	1/3	5631	303	203/		_		Set Deal.			3,	
		3	PAGE / OF	COMMENTS																6-17-05	DATE
	1		Ç)	Teiheloneth A	×	X	(x	X	X	(\ <u>\</u>	$\frac{1}{\sqrt{x}}$	X	12								i
URS	NORMAL		ð	אר בעה שפיישיע קרי אריי דער בער	×					×	X	×	×							10	
72 Hours	NON			CAM 17 METALS / S LUFT METALS													1 1 1 1 1 1 1 1 1		٠		
1	1 1		10	PESTICIDES / PCB'S PPA 8081 / 8141 / 8082	L													(.`` `\	2
				TRPH / TOG M1.814 A93 / 40238 M8													Sec. of Sec.	/	RATOR	\nearrow	
URS 1	5 DAYS		9	SEMI-VOLATILE HYDROCARBONS EPA 8270						\prod						*			RECEIVED BY LABORATORY:		
48 Hours	5 D			CHLORINATED SOLVENTS													T COTTON		à. (a)	J	y.
y k	ī	\exists	40	OXYGENATED FUEL ADDITIVES AGEN 8260M													4		AEGENA SEENA	0	SIGNATURE
1				BTEX & OXYGENATES + PB SCAVENGERS + PB SCAVENGERS + PB SCAVENGERS						$\ $						IRES			_	1	0
200				EPA 8260 Full List + Oxy / Fuel Additives												F26 F22					
707. 443-7024		S. SECTION S.		VOLATILE HYDROCARBONS EPA 8260 (FULL LIST)												SK5.W.Z	i i	2			
7		CTATE COLUMN	4	TPH DIESEL / MOTOR OIL EPA 8015M						11	ļ —				T		TIME		- IME	TIME:	TIME:
		Critical Charles	er Link	X3T8/GAS/H9T & MTBE 0208/M3108 A93													K	2			
PHONE#:	FAX #:			PRESV. YES/NO	N/X	ゝ	ゝ	ゝ	እ	RIA	2/2	4/2	4/2				1				
				CONT.	12	W	N	W	W	4	Ŋ	8	Ŋ			Made	DATE::		DAIE:	DATE::	DATE:
0739				MATRIX	718	_				\Box			_			A Second		1			
476-			Ì	TIME		5:55	3:46	2:48	2:15		6:38	11.57	5:29			10 CO. 15 Sec. 15					
16-9464	14-5769			DATE Sampled	Chih 50-71-9	-						_	-			A CONTRACTOR	14/2	7			
PHONE#: (707) 646-9464 476-	FAX#: (707) 544-5769			CLIENT SAMPLE 1.D.	MW-1	MW-2	MW-3R	MW-4	MW-5	186-6	mw-7	MW-80	MW-90			A COLUMN TO THE PARTY OF THE PA	RELINQUISHED BY: 10.47			RELINQUISHED BY:	RECEIVED BY:
			ŀ	TEM		2	8	4	2	9	7	8	6	9	Ξ	10 m	RELING	RECEN		RELIN	RECEN

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128